

DEBATE: Proton vs. Photon SBRT

Kristin Higgins, MD Associate Professor Department of Radiation Oncology Emory University School of Medicine Winship Cancer Institute Atlanta, GA

nur um

Disclosures

- NRG Oncology
 - Board of Directors
- Reflexion Medical
 - Funded Research
 - Board of Directors/ Scientific Advisory Board
- Astra Zeneca
 - Consultant/Advisory Board
- Jazz Pharmaceuticals
 - Funded Research
- Ultimate Opinions in Medicine
 - Honorarium

Phase II RTOG 0236: SBRT in Medically Inoperable, Early Stage NSCLC

- SBRT: standard of care for medically inoperable, early stage NSCLC^[1,2]
- Distant metastasis remains the dominant pattern of failure
 - RTOG 0236 long-term follow up, 5year distant progression was 31%^[2]

RTOG 0236

SBRT for Medically Inoperable, Early Stage NSCLC

Slide credit: <u>clinicaloptions.com</u> Winship Cancer Institute | Emory University 5

SBRT Summary: Current State

- High dose, ablative radiation treatment using robust immobilization, motion management, and real-time tumor localization
 - 3-5 fractions typically
- Curative treatment for patients ineligible or not wanting to pursue surgery
- Standard option for T1-T3, N0 tumors 7 cm or less
 - Most clinical trials use 5 cm or less
 - Not used for node + disease
- Dose per fraction depends upon tumor location
 - Caution with ultra-central tumors

Proton SBRT

- Proton SBRT is feasible
 - Logistically more challenging
 - Could outcomes possibly be worse than SOC?
- Just because we can, should we use this technology when standard and less expensive techniques perform very well?
- Are there certain disease sites where proton SBRT makes more sense?
 - i.e. Liver vs. Lung?

Early stage lung cancer SBRT

Robust Evaluation

Lung metastasis located near the heart

Robust Evaluation

Lung SBRT: Photon Standards

Plan Evaluation			
Primary Target Coverage Goal	PTV D _{95%} ≥ 100% Rx	PTV D _{95%} ≥ 100% Rx GTV D _{100%} ≥ 110- 120% Rx	PTV D _{95%} ≥ 100% Rx
Maximum Dose No Greater Than	0.03cc < 150% Rx	No specific requirement	D _{max} < 115%
Maximum Dose No Less Than	0.03cc ≥ 115% Rx	No specific requirement	Not utilized
Cl [‡] Goal	≤1.5	No specific requirement	Not utilized
R _{50%} ^{‡‡} Goal	Varies, depends on PTV volume (ref RTOG 0915)	No specific requirement	Not utilized

Institution A Institution B Institution C

De Leo et al, PRO 2022 Feb 24;S1879-8500(22)00067-4

Proton vs. Photon SBRT Dosimetry

- Proton plans have less dose heterogeneity, lower max point dose
- Protons demonstrate low-dose sparing for total lung OAR, i.e. V5 and V10 but equivalent V20
- Protons provide better cardiac and great vessel sparing for tumors located near the heart
- Proton plans could result in slight under-coverage of PTV when range uncertainty is considered

Proton vs. Photon Logistical Considerations

- Motion management challenges
 - No phase gating which can be challenging when lower lobe tumors are moving > 1cm with abdominal compression
 - Not every patient is suitable for SDX (pts that wear oxygen) or breathhold
- Longer treatment times
 - May be difficulty for frail patient population for which SBRT was originally developed for
- High Cost though billed the same as photon SBRT- is it worth the human capital in rad onc departments to produce proton SBRT plans?

Conclusions

- Proton lung SBRT provides little benefit over standard photon lung SBRT
 - May perform worse for some metrics including heterogeneity and PTV coverage
 - Caveat is for tumors located adjacent to heart- cardiac sparing is improved
- Complicating logistical issues further the case against proton SBRT
- There are always exceptions
 - Multiple prior courses of RT, critical location of target, etc.

Ongoing Trials of SBRT + Immunotherapy: SWOG/NRG S1914 (Atezolizumab Plus SBRT vs SBRT)

Open-label, randomized phase III study

- Primary endpoint: OS
- Secondary endpoints: PFS, toxicity, QoL, failure rates (local, regional, distant)

Go Photons!!!