MRI: Prostate, PI-RADS v2.1

Image quality in the multicenter setting can be greatly influenced by variances in acquisition protocols. These variances may be related not only to equipment manufacturer and model, but also technique.

The study may permit imaging per institutional standard-of-care. However, aligning image acquisition to established standards is essential for robust quality data.

Prostate MRI exams should be acquired on a 1.5T or 3.0T MRI scanner. 3T imaging is preferred.

With some 1.5T MRI systems, especially older ones, use of an endorectal coil (ERC) is considered indispensable for achieving the high-resolution diagnostic quality imaging needed to stage prostate cancer.

The patient should evacuate the rectum, if possible, just prior to the MRI exam.

Prostate MRI acquisition protocols should always be tailored to specific patients, clinical questions, management options, and MRI equipment.

The tables below are provided as a guideline and overview for MRI Prostate exams. Please refer to your site's specific MRI manufacturer's imaging protocols for the optimal scanning protocol.

The Prostate MRI examination should be acquired according to the PIRADSv2.1 standard. The exam should contain, at a minimum, the following series:

Pre-Contrast

- 1. 3-plane localization scan
- 2. T1-weighted sequence
- 3. T2-weighted sequence
- 4. Diffusion weighted sequence
- 5. Generated ADC map from DWIs

Post-Contrast

6. Dynamic Contrast-enhanced T1-weighted sequence

	•	
Magnet Strength	1.5T or 3T	Low-field magnets are not acceptable
Coil	Phased Array Coil Endorectal Coil (ERC) as necessary	ERC as needed, particularly at 1.5T
FOV	Smallest FOV that encompasses the prostate gland and seminal vesicles	For all sequences
Patient Position	Supine	
Contrast Injection	Dual-chamber power injector recommended Contrast Bolus = 0.1 mmol/kg Bolus Rate = 2–3 mL/s Saline Flush = 20 mL	Insertion of intravenous catheter in upper extremity prior to the start of contrast imaging.
Slice Plane	Axial [Plus orthogonal plane(s) for T2w]	May be oblique to match long axis of prostate.

Exam and Patient Preparation

MRI: Prostate, PI-RADS v2.1

Additional Considerations	Antispasmodic agent may be	Diminishes bowel peristalsis and
	artifacts.	improves quality of imaging.
	Patient should evacuate rectum just	Reduces DWI artifact, can facilitate

Image Acquisition and Map Generation

Localization Scan	3-plane localization scan			
T1-Weighted	Per site's standard acquisition	Performed prior to contrast		
(T1w) Sequence	parameters			
	Slice thickness = 3.0 mm	RARE, e.g., FSE or TSE. To avoid blurring, excessive echo train lengths should be avoided.		
Pre-Contrast T2-Weighted (T2w) Sequence	FOV = 120–200 mm Resolution ≤ 0.7 mm (phase) ≤ 0.4 mm (frequency) Gap = 0 mm	T2w images should always be obtained in the axial plane (either straight axial to the patient or in an oblique axial plane matching the long axis of the prostate) and a minimum of one additional orthogonal plane (i.e., sagittal and/or coronal).		
Pre-Contrast Diffusion- Weighted Imaging (DWI) with ADC mapping	Slice thickness $\leq 4.0 \text{ mm}$ Gap = 0 mm TR $\geq 3000 \text{ ms}$ TE $\leq 90 \text{ ms}$ Resolution $\leq 2.5 \text{ mm phase}$ and frequency <i>b</i> -values <i>b</i> -val	DWI image set must include a <i>b</i> -value \geq 1400 s/mm ² . This can be calculated from other <i>b</i> -values (and resultant ADC map) or physically acquired.		
ADC Maps	Generated from DWIs at multiple b- valuesFor only 2 b-values: Low $b = 0-100$ s/mm²(Preferred low $b = 50-100$ s/mm²) Intermediate $b = 800-1000$ s/mm²For all ADC maps: Max $b \ge 1000$ s/mm²	 For ADC maps, if only two <i>b</i>-values can be acquired due to time or scanner constraints, use one low <i>b</i>=0–100 s/mm² (preferably 50–100 s/mm²) and one intermediate <i>b</i>=800–1000 s/mm². A high <i>b</i>-value (≥1400 s/mm²) image set is also mandatory and preferably should be obtained from a separate acquisition or calculated from the low and intermediate <i>b</i>-value images. To calculate ADC, use <i>b</i>≤1000 s/mm² to avoid diffusion kurtosis effect that have been described at higher <i>b</i>-values. An acquired <i>b</i>≥1400 s/mm² should not be used to generate ADC maps. 		

Reviewed by Michael A. Boss, PhD

MRI: Prostate, PI-RADS v2.1

			FOV should encompass the entire prostate gland and seminal vesicles.
Dynamic Contrast Enhanced (DCE) T1-Weighted	Slice thickness =	3.0 mm	
	FOV =	120–200 mm	While both 2D or 3D T1w gradient
	Resolution ≤	2.0 mm phase and frequency	echo (GRE) sequences have been described in the literature, 3D T1w
	Gap =	0 mm	GRE is generally available using
(2D or 3D technique)	TR <	100 ms	modern systems and is preferred.
	TE <	5 ms	· ·
	Temporal Resolution ≤	15 s	Scan should be carried out for
	Observation Time ≥	120 s	several minutes and temporal resolution should be ≤15 seconds per acquisition to depict focal early enhancement.

References

- ACR–SAR–SPR Practice Parameter for the Performance of Magnetic Resonance Imaging (MRI) of the Soft-Tissue Components of the Pelvis, Res. 4 – 2015. <u>https://www.acr.org/-</u> /media/ACR/Files/Practice-Parameters/MR-SoftTissue-Pel.pdf, accessed March 26, 2021
- 2. PI-RADS: Prostate Imaging– Reporting and Data Systems, v2.1, 2019. <u>https://www.acr.org/-/media/ACR/Files/RADS/PI-RADS/PIRADS-V2-1.pdf</u>, accessed June 10, 2021.